Emas Semerta / Dolar A.S.
Pendidikan

Intraday Gold Trading System with Neural Networks: Step-by-Step

402
________________________________________
🏆 Intraday Gold Trading System with Neural Networks: Step-by-Step Practical Guide
________________________________________
📌 Step 1: Overview and Goal
The goal is to build a neural network system to predict intraday short-term gold price movements—typically forecasting the next 15 to 30 minutes.
________________________________________
📈 Step 2: Choosing Indicators (TradingView Equivalents)
Key indicators for intraday gold trading:
• 📊 Moving Averages (EMA, SMA)
• 📏 Relative Strength Index (RSI)
• 🌀 Moving Average Convergence Divergence (MACD)
• 📉 Bollinger Bands
• 📦 Volume Weighted Average Price (VWAP)
• ⚡ Average True Range (ATR)
________________________________________
🗃 Step 3: Data Acquisition (Vectors and Matrices)
Use Python's yfinance to fetch intraday gold data:
import yfinance as yf
import pandas as pd

data = yf.download('GC=F', period='30d', interval='15m')
________________________________________
🔧 Step 4: Technical Indicator Calculation
Use Python’s pandas_ta library to generate all required indicators:
import pandas_ta as ta

data['EMA_20'] = ta.ema(data['Close'], length=20)
data['EMA_50'] = ta.ema(data['Close'], length=50)
data['RSI'] = ta.rsi(data['Close'], length=14)
macd = ta.macd(data['Close'])
data['MACD'] = macd['MACD_12_26_9']
data['MACD_signal'] = macd['MACDs_12_26_9']
bbands = ta.bbands(data['Close'], length=20)
data['BBL'] = bbands['BBL_20_2.0']
data['BBM'] = bbands['BBM_20_2.0']
data['BBU'] = bbands['BBU_20_2.0']
data['ATR'] = ta.atr(data['High'], data['Low'], data['Close'], length=14)

data.dropna(inplace=True)
________________________________________
🧹 Step 5: Data Preprocessing and Matrix Creation
Standardize your features and shape data for neural networks:
from sklearn.preprocessing import StandardScaler
import numpy as np

features = ['EMA_20', 'EMA_50', 'RSI', 'MACD', 'MACD_signal', 'BBL', 'BBM', 'BBU', 'ATR']
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data[features])

def create_matrix(data_scaled, window_size=10):
X, y = [], []
for i in range(len(data_scaled) - window_size - 1):
X.append(data_scaled[i:i+window_size])
y.append(data['Close'].iloc[i+window_size+1])
return np.array(X), np.array(y)

X, y = create_matrix(data_scaled, window_size=10)
________________________________________
🤖 Step 6: Neural Network Construction with TensorFlow
Use LSTM neural networks for sequential, time-series prediction:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

model = Sequential([
LSTM(64, activation='relu', return_sequences=True, input_shape=(X.shape[1], X.shape[2])),
Dropout(0.2),
LSTM(32, activation='relu'),
Dense(1)
])

model.compile(optimizer='adam', loss='mse')
________________________________________
🎯 Step 7: Training the Neural Network
history = model.fit(X, y, epochs=50, batch_size=32, validation_split=0.2)
________________________________________
📊 Step 8: Evaluating Model Performance
Visualize actual vs. predicted prices:
import matplotlib.pyplot as plt

predictions = model.predict(X)
plt.plot(y, label='Actual Price')
plt.plot(predictions, label='Predicted Price')
plt.xlabel('Time Steps')
plt.ylabel('Gold Price')
plt.legend()
plt.show()
________________________________________
🚦 Step 9: Developing a Trading Strategy
Translate predictions into trading signals:
def trade_logic(predicted, current, threshold=0.3):
diff = predicted - current
if diff > threshold:
return "Buy"
elif diff < -threshold:
return "Sell"
else:
return "Hold"

latest_data = X[-1].reshape(1, X.shape[1], X.shape[2])
predicted_price = model.predict(latest_data)[0][0]
current_price = data['Close'].iloc[-1]

decision = trade_logic(predicted_price, current_price)
print("Trading Decision:", decision)
________________________________________
⚙️ Step 10: Real-Time Deployment
Automate the model for live trading via broker APIs (pseudocode):
while market_open:
live_data = fetch_live_gold_data()
live_data_processed = preprocess(live_data)
prediction = model.predict(live_data_processed)
decision = trade_logic(prediction, live_data['Close'])
execute_order(decision)
________________________________________
📅 Step 11: Backtesting
Use frameworks like Backtrader or Zipline to validate your strategy:
import backtrader as bt

class NNStrategy(bt.Strategy):
def next(self):
if self.data.predicted[0] > self.data.close[0] + threshold:
self.buy()
elif self.data.predicted[0] < self.data.close[0] - threshold:
self.sell()

cerebro = bt.Cerebro()
cerebro.addstrategy(NNStrategy)
# Add data feeds and run cerebro
cerebro.run()
________________________________________
🔍 Practical Use-Cases
• ⚡ Momentum Trading: EMA crossovers, validated by neural network.
• 🔄 Mean Reversion: Trade at Bollinger Band extremes, validated with neural network predictions.
• 🌩️ Volatility-based: Use ATR plus neural net for optimal entry/exit timing.
________________________________________
🛠 Additional Recommendations
• Frameworks: TensorFlow/Keras, PyTorch, scikit-learn
• Real-time monitoring and risk management are crucial—use volatility indicators!
________________________________________
📚 Final Thoughts
This practical guide arms you to build, deploy, and manage a neural network-based intraday gold trading system—from data acquisition through backtesting—ensuring you have the tools for robust, data-driven, and risk-managed trading strategies.
________________________________________
Nota
Top 10 Small-Cap Biotechs with Upcoming Catalysts for 2025
Top 10 Small-Cap Biotechs with Upcoming Catalysts for 2025

Nota
GOLD H4 Update: Bulls will target 3600/3750 USD Market Update
GOLD H4 Update: Bulls will target 3600/3750 USD Market Update

Nota
Update of the Bullish/Bearish Catalysts for Gold prices
Update of the Bullish/Bearish Catalysts for Gold prices

Nota
TOP 10 Stats of the Current Gold Bull Market in 2025 and Outlook
TOP 10 Stats of the Current Gold Bull Market in 2025 and Outlook

Penafian

Maklumat dan penerbitan adalah tidak dimaksudkan untuk menjadi, dan tidak membentuk, nasihat untuk kewangan, pelaburan, perdagangan dan jenis-jenis lain atau cadangan yang dibekalkan atau disahkan oleh TradingView. Baca dengan lebih lanjut di Terma Penggunaan.