PROTECTED SOURCE SCRIPT
QUANTA - LAB GARCH

Institutional volatility modeling suite with GARCH estimation, VaR/CVaR risk metrics, and Basel III backtesting.
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
Skrip dilindungi
Skrip ini diterbitkan sebagai sumber tertutup. Akan tetapi, anda boleh menggunakannya secara bebas dan tanpa apa-apa had – ketahui lebih di sini.
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
Penafian
Maklumat dan penerbitan adalah tidak bertujuan, dan tidak membentuk, nasihat atau cadangan kewangan, pelaburan, dagangan atau jenis lain yang diberikan atau disahkan oleh TradingView. Baca lebih dalam Terma Penggunaan.
Skrip dilindungi
Skrip ini diterbitkan sebagai sumber tertutup. Akan tetapi, anda boleh menggunakannya secara bebas dan tanpa apa-apa had – ketahui lebih di sini.
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
Penafian
Maklumat dan penerbitan adalah tidak bertujuan, dan tidak membentuk, nasihat atau cadangan kewangan, pelaburan, dagangan atau jenis lain yang diberikan atau disahkan oleh TradingView. Baca lebih dalam Terma Penggunaan.