Macroeconomic Artificial Neural Networks

This script was created by training 20 selected macroeconomic data to construct artificial neural networks on the S&P 500 index .
No technical analysis data were used.
The average error rate is 0.01.
In this respect, there is a strong relationship between the index and macroeconomic data.
Although it affects the whole world,I personally recommend using it under the following conditions: S&P 500 and related ETFs in 1W time-frame (TF = 1W SPX500USD , SP1! , SPY , SPX etc. )

Macroeconomic Parameters

Effective Federal Funds Rate ( FEDFUNDS )
Initial Claims ( ICSA )
Civilian Unemployment Rate ( UNRATE )
10 Year Treasury Constant Maturity Rate ( DGS10 )
Gross Domestic Product , 1 Decimal (GDP)
Trade Weighted US Dollar Index : Major Currencies ( DTWEXM )
Consumer Price Index For All Urban Consumers (CPIAUCSL)
M1 Money Stock ( M1 )
M2 Money Stock ( M2 )
2 - Year Treasury Constant Maturity Rate ( DGS2 )
30 Year Treasury Constant Maturity Rate (DGS30)
Industrial Production Index ( INDPRO )
5-Year Treasury Constant Maturity Rate ( FRED : DGS5 )
Light Weight Vehicle Sales: Autos and Light Trucks (ALTSALES)
Civilian Employment Population Ratio (EMRATIO)
Capacity Utilization (TOTAL INDUSTRY) (TCU)
Average (Mean) Duration Of Unemployment (UEMPMEAN)
Manufacturing Employment Index (MAN_EMPL)
Manufacturers' New Orders ( NEWORDER )
ISM Manufacturing Index (MAN : PMI)

Artificial Neural Network (ANN) Training Details :

Learning cycles: 16231
AutoSave cycles: 100


Input columns: 19
Output columns: 1
Excluded columns: 0

Training example rows: 998
Validating example rows: 0
Querying example rows: 0
Excluded example rows: 0
Duplicated example rows: 0


Input nodes connected: 19

Hidden layer 1 nodes: 2
Hidden layer 2 nodes: 0
Hidden layer 3 nodes: 0

Output nodes: 1


Learning rate: 0.1000
Momentum: 0.8000 (Optimized)
Target error: 0.0100

Training error: 0.010000

NOTE : Alerts added . The red histogram represents the bear market and the green histogram represents the bull market.
Bars subject to region changes are shown as background colors. (Teal = Bull , Maroon = Bear Market )

I hope it will be useful in your studies and analysis, regards.

Keluarkan daripada Skrip Pilihan Tambah kepada Skrip Pilihan
Advanced Paid Systems Published.
(Minimum 15 Days FREE Test Option)
Preliminary Whitepaper :
Temporary E-mail :
Thank you. It is great contribution. I am trying to understand the logic.
1. you calculate the second derivative of each indicator, right?
2. what function does the "ActivationFunctionTanh"?
3. and how do you get the coeficientes for n_19 and n_20?
Albert Ac
+2 Balas
Noldo jdalber
@jdalber, First of all thanks for your interest. You can find more information on my first Artificial Neural Network script :

jdalber Noldo
@Noldo, thanks
+1 Balas
Noldo jdalber
@jdalber, Your welcome !
could U make btc version of this?))
+1 Balas
Noldo mrgr888n
hello, I have already made with blockchain data:

@Noldo, oh yeah, I remembered. But it's on weekly tf..
Noldo mrgr888n
I did so because it enters into the data may
cause repaint TF < 1W (time-frame ) , regards.
@Noldo, it's very interesting anyway, TY.
+1 Balas
Noldo mrgr888n
@mrgr888n, your welcome !
Laman Utama Penyaring Saham Penyaring Forex Penyaring Kripto Kalendar Ekonomi Rancangan Bagaimana ia berfungsi Ciri-ciri Carta Harga Peraturan Dalaman Pine Wizards Moderator Laman web dan Penyelesaian Broker Widget Penyelesaian Pencartaan Perpustakaan Pencartaan yang Ringan Pusat Bantuan Rujuk rakan Permintaan Ciri Blog & Berita Twitter
Profil Tetapan Profil Akaun dan Pengebilan Rujuk rakan Tiket Sokongan Saya Pusat Bantuan Idea yang diterbitkan Pengikut Mengikut Mesej Peribadi Sembang Daftar Keluar