PINE LIBRARY

MLLossFunctions

Library "MLLossFunctions"
Methods for Loss functions.

mse(expects, predicts) Mean Squared Error (MSE) " MSE = 1/N * sum((y - y')^2) ".
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float
AIarraysartificial_intelligencefunctionlossmachinelearningmlneuralnetworkstatistics

Perpustakaan Pine

Dalam semangat sebenar TradingView, penulis telah menerbitkan kod Pine ini sebagai satu perpustakaan sumber terbuka supaya pengaturcara Pine lain dari komuniti kami boleh menggunakannya semula. Sorakan kepada penulis! Anda boleh menggunakan perpustakaan ini secara peribadi atau dalam penerbitan sumber terbuka lain, tetapi penggunaan semula kod dalam penerbitan ini adalah dikawal oleh Peraturan dalaman.

Penafian