RicardoSantos

MLLossFunctions

Library "MLLossFunctions"
Methods for Loss functions.

mse(expects, predicts) Mean Squared Error ( MSE ) " MSE = 1/N * sum((y - y')^2) ".
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

binary_cross_entropy(expects, predicts) Binary Cross-Entropy Loss (log).
  Parameters:
    expects: float array, expected values.
    predicts: float array, prediction values.
  Returns: float

Perpustakaan Pine

Di dalam semangat sebenar TradingView, pengarang telah menerbitkan kod Pine ini sebagai perpustakaan sumber terbuka, jadi pengaturcara-pengaturcara Pine yang lain dari komuniti kami boleh menggunakannya semula. Sorakan kepada penulis! Anda boleh menggunakan perpustakaan ini secara peribadi atau pada penerbitan-penerbitan sumber terbuka lain, tetapi penggunaan semula kod ini di dalam penerbitan adalah ditadbir oleh Peraturan Dalaman.

Penafian

Maklumat dan penerbitan adalah tidak dimaksudkan untuk menjadi, dan tidak membentuk, nasihat untuk kewangan, pelaburan, perdagangan dan jenis-jenis lain atau cadangan yang dibekalkan atau disahkan oleh TradingView. Baca dengan lebih lanjut di Terma Penggunaan.

Mahu gunakan perpustakaan ini?

Salin garisan ini dan tampalkan ia di dalam skrip anda.