# Importa le librerie
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from statsmodels.stats.diagnostic import het_breuschpagan
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
# Carica i dati
data = pd.read_csv("tuo_dataset.csv")
# Crea una matrice di design e una variabile dipendente
X = data[['Variable1', 'Variable2', 'Variable3']]
y = data['VariabileDipendente']
# Dividi i dati in training set e test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Crea un modello di regressione lineare
model = LinearRegression()
# Addestra il modello
model.fit(X_train, y_train)
# Fai previsioni
y_pred = model.predict(X_test)
# Verifica l'omoschedasticità
_, p_value, _, _ = het_breuschpagan(y_test - y_pred, X_test)
if p_value < 0.05:
print("Viola l'omoschedasticità")
else:
print("Omoschedasticità soddisfatta")
# Verifica la collinearità
vif = pd.DataFrame()
vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif["Feature"] = X.columns
print(vif)
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from statsmodels.stats.diagnostic import het_breuschpagan
from statsmodels.stats.outliers_influence import variance_inflation_factor
import statsmodels.api as sm
# Carica i dati
data = pd.read_csv("tuo_dataset.csv")
# Crea una matrice di design e una variabile dipendente
X = data[['Variable1', 'Variable2', 'Variable3']]
y = data['VariabileDipendente']
# Dividi i dati in training set e test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Crea un modello di regressione lineare
model = LinearRegression()
# Addestra il modello
model.fit(X_train, y_train)
# Fai previsioni
y_pred = model.predict(X_test)
# Verifica l'omoschedasticità
_, p_value, _, _ = het_breuschpagan(y_test - y_pred, X_test)
if p_value < 0.05:
print("Viola l'omoschedasticità")
else:
print("Omoschedasticità soddisfatta")
# Verifica la collinearità
vif = pd.DataFrame()
vif["VIF"] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif["Feature"] = X.columns
print(vif)
Penafian
Maklumat dan penerbitan adalah tidak dimaksudkan untuk menjadi, dan tidak membentuk, nasihat untuk kewangan, pelaburan, perdagangan dan jenis-jenis lain atau cadangan yang dibekalkan atau disahkan oleh TradingView. Baca dengan lebih lanjut di Terma Penggunaan.
Penafian
Maklumat dan penerbitan adalah tidak dimaksudkan untuk menjadi, dan tidak membentuk, nasihat untuk kewangan, pelaburan, perdagangan dan jenis-jenis lain atau cadangan yang dibekalkan atau disahkan oleh TradingView. Baca dengan lebih lanjut di Terma Penggunaan.