OPEN-SOURCE SCRIPT

Machine Learning: LVQ-based Strategy

Telah dikemas kini
LVQ-based Strategy (FX and Crypto)

Description:

Learning Vector Quantization (LVQ) can be understood as a special case of an artificial neural network, more precisely, it applies a winner-take-all learning-based approach. It is based on prototype supervised learning classification task and trains its weights through a competitive learning algorithm.

Algorithm:

Initialize weights
Train for 1 to N number of epochs
- Select a training example
- Compute the winning vector
- Update the winning vector
Classify test sample

The LVQ algorithm offers a framework to test various indicators easily to see if they have got any *predictive value*. One can easily add cog, wpr and others.
Note: TradingViews's playback feature helps to see this strategy in action. The algo is tested with BTCUSD/1Hour.

Warning: This is a preliminary version! Signals ARE repainting.
***Warning***: Signals LARGELY depend on hyperparams (lrate and epochs).

Style tags: Trend Following, Trend Analysis
Asset class: Equities, Futures, ETFs, Currencies and Commodities
Dataset: FX Minutes/Hours+++/Days
Nota Keluaran
Minor fix.
Nota Keluaran
Minor edit.
Nota Keluaran
Added signal reversal. Some assets and TFs require inverting the signal. Mind this is the work in process.
AImachinelearningMoving AveragesTrend AnalysisVolatility

Skrip sumber terbuka

Dalam semangat sebenar TradingView, penulis telah menerbitkan kod Pine ini sebagai sumber terbuka supaya pedagang dapat memahami dan mengesahkannya. Sorakan kepada penulis! Anda boleh menggunakan perpustakaan ini secara percuma, tetapi penggunaan semula kod dalam penerbitan ini adalah dikawal oleh Peraturan dalaman. Anda boleh menyukainya untuk menggunakannya pada carta.

Ingin menggunakan skrip ini pada carta?

Penafian