OPEN-SOURCE SCRIPT

Machine Learning + EMA Strategy

251
Machine Learning + EMA Strategy (kNN Algorithm)

📌 Overview

This strategy combines Exponential Moving Averages (EMA) with a Machine Learning-based k-Nearest Neighbors (kNN) algorithm to enhance trade accuracy. It dynamically adjusts entry and exit points based on market trends and historical price action.

🛠️ How It Works

✅ Uses 9 EMAs (8, 14, 20, 26, 32, 38, 44, 50, 200) to identify trends.
✅ Employs kNN (k-Nearest Neighbors) classification to predict price movement.
✅ Auto-closes previous trades before opening a new one to prevent overlap.
✅ Plots a real-time prediction indicator to visualize market conditions.

🎯 Trade Logic

🔵 Buy Signal → When EMA 8 crosses above EMA 50, and the kNN prediction is positive.
🔴 Sell Signal → When EMA 8 crosses below EMA 50, and the kNN prediction is negative.

🚀 Why Use This Strategy?

✅ Machine Learning-Powered: Uses kNN for data-driven decisions.
✅ Trend-Following & Adaptive: EMAs filter out market noise.
✅ Automatic Position Management: No overlapping trades.
✅ Customizable Parameters: Suitable for multiple asset classes.

⚠️ Disclaimer

This strategy is for educational purposes only and should be backtested before live trading. Past performance does not guarantee future results.

Penafian

Maklumat dan penerbitan adalah tidak dimaksudkan untuk menjadi, dan tidak membentuk, nasihat untuk kewangan, pelaburan, perdagangan dan jenis-jenis lain atau cadangan yang dibekalkan atau disahkan oleh TradingView. Baca dengan lebih lanjut di Terma Penggunaan.